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Modes in Coupled Optical Resonators with Active Media

J. R. FONTANA, MEMBER, IEEE

Summary—A general method is proposed to analyze the proper-
ties of optical systems composed of several coupled resonators. It is
shown that by using appropriate matrices to represent the fields in
the resonators and the couplings between them, an equation can be
written, often by inspection, for the eigenvalue s = u+jw which gives
the frequency and the rate of growth of the fields for all the modes
of a given system.

A re-entrant coupled system with loss and gain regions is dis-
cussed as an example. The effects of changes in mirror transmission,

resonator length and medium properties are studied using the
method.

I. INTRODUCTION

I

T HAS BEEN suggested by various authors’,2 that

optical masers with desirable properties could be

obtained by operating the active medium in a sys-

tem of coupled optical resonators rather than in simple

structures of the Fabry-Perot type. In the latter many

modes of oscillation are allowed, separated by equal

frequency intervals and with relative growth rates

which depend only on the active medium and not on the

resonator. Simultaneous oscillation in several modes is

thus possible within the linewidth of usual materials.
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Coupled systems can have modes with unevenly spaced

frequencies and different rates of growth or of attenua-

tion if lossy materials are used as well as active media.

These properties depend on the resonant system as well

as the materials, and are determined by mechanical de-

sign and adjustment. Possible features include selective

mode suppression, so that only one mode oscillates, or

so that only two oscillate with controllable frequency

separation.

The properties of arbitrary coupled resonator systems

can be studied as an eigenvalue problem. The time-

dependence properties of each mode are given by the

complex exponential exp (st), where s = a +ju expresses

the frequency of oscillation and the rate of growth or

decay of the mode. The form of the eigenvalue equation

specifies the freedom one has to choose the eigenvalues

s; that is, it shows the possibilities and limitations of

each particular system and also of coupled systems in

general. The analysis is greatly simplified by considering

that the traveling waves inside the resonators are ap-

proximately TEM. Use can thus be made of equivalent

circuits with coupled TEM transmission lines.

II. TWO-MIRROR RESONATORS

To introduce the method proposed, we consider first a

simple, uncoupled system. Fig. 1 (a) shows a resonator

formed by two identical mirrors in a medium assumed
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(a)

Fig, l—Two-mirror resonator and its transmission line
equivalent representation.

without absorption. Fox and Li3 have shown there exist

modes characterized by field distributions which repro-

duce themselves in pattern after bouncing between the

mirrors. If x and y are (curvilinear) coordinates on the

mirrors, and #(xy) is the field (E or H) leaving one

mirror, then the condition for * to belong to one of these

modes is that the incoming field distribution on the

other mirror equals

(1)

The constant y and the function ~(.ty) characterize

each mode. Both depend on the frequency ~ but, over

the narrow frequency range typical of the operation of

masers, the +’s are so close to transverse electromagnetic

that they can be assumed independent of co. The same

is true of the magnitudes ] -y 1. The phases of y vary

linearly with a. Therefore

where T is the one-way transit time between mirrors

and O is a constant phase shift. Since i(xy) depends on

the mode only, the fields leaving one mirror can be

represented by a complex number A and the fields ar-

riving to the other by another number A‘, both quanti-

ties being defined so that 1.412 and IA’] 2 equal the

corresponding powers.

If the medium between the mirrors has linear absorp-

tion properties (positive or negative), a time absorption

coefficient a can be defined so the fields produced by

*(xy) are given by

e-a” + ~($y) (3)

instead of (1).

Each mode in a two-mirror system is then character-

ized by a complex propagation coefficient P defined by

~ k. G. Fox and T. Li, “Resonant modes in a maser interferome-
ter, ” Bell Sys. Tech. J., vol. 40, p. 453; 1961.

With an active medium of sufficiently negative a, we

can have self-replicating patterns which grow in time.

Under this oscillation situation, the time dependence

of all fields is given by a certain exp (st), with s = a +jm

The condition for resonance is found by following the

wave leaving one mirror through two transits and two

reflections. Letting p be the amplitude reflection coeffi-

cient of the mirrors, the condition after the time 2 T of a

round trip is that the phase is the same and the ampli-

tude has increased by a factor exp (2u T). Therefore

exp (2uT) = (flp)~ (5)

or, substituting P from (4) and using a determinant!

form,

All quantities are known from the physical and geo-

metrical properties of the system except s. ‘The solution

for s is

(7)

–8 + 2~h
w= (8)

T

k = 0, 1, 2, 3, etc.

The condition for positive u is contained in (7); if a

is sufficiently negative for given ) -y [ and, p, oscillation

at any of the frequencies given by (8) is possible.

For all the mode solutions characterized by the same

~(xy), the simple transmission line eCIUiVLdent CkCUit of

Fig. 1(b) applies. The line has the same length and at-

tenuation as the region between the mirrors, and the

terminations have reflectivity p. This equivalent circuit

and (6) are easy to generalize for the case of mirrors with

different p.

III. MULTIRESONATOR SYSTEMS

The approach of the preceding secticm can be ex-

tended to coupled configurations. Fig. 2 (a.) shows a sys-

tem with three parallel plane mirrors, the middle one

partly transparent. In this case, the fields in both parts

will be interdependent and the whole structure will be-

have as a system with modes described by values of s

different than for either part alone. To get a coupling

of this type, the modes in both regions must have the

same t(xy). In Fig. 2(b) a single pair of mirrors support

several modes of the type described in Section II, with

different #(xy), but they are coupled by a perturbing

irregularity shown diagrammatically on one mirror,

Fig. 2(c) is similar to 2(a) but with another coupling

arrangement t.
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All these systems are formed by reflecting surfaces

immersed in media with linear absorption or emission

properties, possibly different for each region. The fields

these structures can support are all described in terms

of self-reproducing patterns ~ ,(xy) traveling from one

reflecting surface to another. Calling these propagating

patterns traveling waves, we use the symbols A, and

A / as before to indicate amplitude and phase for each

one of them at the sending and receiving surfaces, re-

spectively. The term mode is used for the whole system.

The arrows on Fig. 2 indicate the traveling waves for

each case. Only two pairs are shown for (b) although

there could be many. In Fig. 3, a transmission line

equivalent circuit is shown for each system of Fig. 2,

with t%e traveling waves numbered to correspond.

To apply the method of Section II, let [A] and [A’]

be column matrices of order N equal to the number of

traveling waves in the system

Al

U
[A] = ‘2 ~ (9)

.4 h,.1

‘A; ‘

[A’] = :2’ . (lo)

\AN’,

The reflecting-transmitting surfaces perform the func-

tion of coupling the matrices [.4] and [.4’]; each ele-

ment of [A ] is a linear combination of the elements of

[A’]. So, we can define a square coupling matrix [c],

of order N, such that

[A] = [C][A’]. (11)

The matrix [c] is not necessarily symmetric, and its

elements will be complex if fixed phase delay is intro-

duced at the coupling. As no traveling wave couples to

itself, the diagonal elements are all zero: C,%= O. For

passive couplings,

~]c,, ]’<1. (12)
3

To study the time dependence of the fields under

resonant conditions we write another relationship be-

tween [A] and [A’ ],

[A’] = [P][A]. (13)

The square propagation matrix [P] has only diagonal

elements P,i as no interaction is assumed between

traveling waves except at the surfaces:

A{ = PiiAi. (14)

Each P,, is not equal to the p, defined in (4) because

A ~ and A ~’ in (14) are considered at the same instant

of time t, while according to the definition

(a)

(b) (c)

Fig. 2—Examples of coupled resonator systems. The broken lines
show transmitting-reflecting surfaces. The arrows indicate the
traveling waves; only two pairs are shown in (b).

(a)

2=’ 4Z3

(b)

I 1
4

2=’ 8=7

1

(c)

Fig. 3—Equivalent transmission line circuits for the systems of
Fig. 2. The traveling waves are numbered to correspond. The
boxes represent passive couplers.

A j’(t)
pi =

A;(t – Ti) -

Since all fields grow with exp (at),

P,, = ~ = *,e-u,%
A,(t)

(15)

(16)

where, as before,

~–ai T,–j(w T;+$, )A=,;i, . (17)

Combining (11) and (13) we have

[A] = [C][P][A] (18)

or

(19){[C][P] – [I]]A = O

where [~] is the identity matrix.
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Each solution [A] of this equation gives the starting

amplitudes and phases of all traveling waves correspond-

ing to a mode of the system. The eigen value is s = a+j-o,

which is the only quantity in the curly bracket not de-

termined directly by the geometry and physical proper-

ties of the system. The values of s are given by the fol-

lowing determinantal equation, obtained by perform-

ing the operations and using the fact that the P,’S are

nonzero:

D=

where

–A71es T1 C12 .. CLV

C21 – A’2e’T’ . . . C2U == o (20)

CNI CNt . . . – KAVeSrN

(21)

I IK,l z is the fractional power lost per one-way pass,,
through the ith resonator; if \ ~, I <1, i.e., if at is suff-

iciently negative to compensate for I P, I >1, there is net

gain in the ith traveling wave.

IV. SOLUTION OF THE DETERMINANTAL EQUATION

For any given system, (20) is readily written. The

diagonal elements are given by the parameters a, I -y 1,

0 and T of each resonator, and the coupling coefficients

C,, by the system geometry and mirror properties.

To find s, we must solve a transcendental equation. In

many cases, however, the determinant reduces to a

polynomial with integer exponents. This happens when

all the transit times T, are exact multiples of some time

TO,

Then we can use a new complex variable instead of s,

and write

so that the determinant in (2o) becomes a polynomial

D(z) of order

M=~m,. (25)

Consequently, a coupled system will possess M pos-

sible values of z, distinct or multiple, representable on

the complex plane. Their magnitude gives the growth

rate u of the corresponding mode: all the z’s within the

circle 1.zI = 1 are for damped modes, and those outside

for growing modes. The angle of each z is the frequency

co of the mode multiplied by the constant TO and, as the

angles are multivalued, there are infinitely many U’S for

each z, in agreement with (23), separated by equal in-

tervals 27r/ TO. A complete set of M values of z with the

angles taken between O and 27r forms a period for all the

possible values of u allowed by the system. How many

of these periods have to be considered in a practical case

depends of course on the frequency dependence of the

active media.

The form of the equation D(z) = O gives some prop-

erties of the solutions. Multiple roots can exist, but there

is always more than one root, as D(z) is nclt of the form

(z –Zl))”f.

Eq. (20) also permits the study of small variations

in the physical dimensions of the system, such as those

caused by moving a mirror by one wavelength or less.

The effect of these “tuning” adjustments can be ex-

pected to be considerable, as the impedances in the

transmission line equivalent may vary drastically with

changes in length. If in a system in which (22) applies

we introduce a variation of one T, of the ord[er of a

period of oscillation,

ATi ~ 27r/’a,

then D(z) is modified by changing the corresponding

integer m, to a value

??Z.(1 + e)

where

ICI =1++.‘t
So, any term containg z~’ will be multiplied by Z6W.

The magnitude of this quantity is very close to unity

and its angle is

~m,(~TO + 2rK”); A7 = o, 1, 2, (!tc.

If we vary continuously the value of one T;, the ef-

fect on D(z) is a change in angle but not in magnitude

of all the coefficients of the terms containing the cor-

responding mi. A variation AT, = 2r/co causes a change

of 27r in the angle of the coefficients.

V. EXAMPLE

The system shown in Fig. 4 displays characteristics

typical of the configurations discussed in this paper, and

will be used to illustrate the method of analysis.

The active medium is in a resonator shaped so that

both its ends can interact, to an extent determined by

the reflectivity of the end walls, through a passive

resonator from which output beams are couplecl out by

means of a tilted plate. A small rotation of this plate will

change the path length in air.

The pertinent parameters of the system, are the re-

flectivity and transmissivity of the end mirrors and of

the plate, the plate angle, the physical dimensions and

the properties of the active medium. The pc)wer ex-

tracted by the tilted plate can be considered as a loss of

the passive resonator and the phase shift as arl adjust-

ment of its length, so a proper value for K in the passive

resonator accounts for all plate effects. Fi:g. 5 is a repre-

sentation showing the four coupled traveling waves.
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\,

I

Fig. 4—Example of coupled resonator system. The active medium is
in the broken ring-shaped resonator with four mirrors and two
partly transparent end surfaces. The variable tilted plate in the
air-filled resonator reflects part of the energy away from the
system, as shown by the arrows.

Fig. S—f)iagrammatic representation of
the system of Fig. 4.

--(=U

Fig. 6—Mode eigenvalues for the system of Fig. 4, represented in
the complex z plane, for several values of the end surface reflec-
tivity p. The circles ha~-e unit radius.

Let us first make the transit time in the active region

an exact multiple of that of the passive region,

T1 = T2 = mTa = mTd = mTO. (26)

The determinantal equation D(z) = O can be written

at once,

] -K,z~ p 1- 01
– Kzzm O

D(z) = p
7

.
0 –K~z ‘p

O. (27)
T

I o , -, -K,zl

The symbols p and r stand for reflectivity and trans-

missivity respectively. In what follows, we assume zero

mirror loss, so

p2+T2=l. (28)

Expanding (27), writing Kz = Kl, K4 = K3 and using

(28) we have

2(1 – p’) 2
P2

22.+2 _ _ 2.+1 _ L &z — — @

KIKa A’32 K1’

1
+ — = O. (29)

A71’K3~

Putting numbers for p, K], Ks and m, we can solve

for the 2m +2 values of z. Plotted on the complex z

plane, these values would show the frequency spacing

and growth rates of the 2m + 2 modes in a period of the

complete set of solutions, repeating at frequency inter-

vals of 27r/ TO, Changes in the parameters would produce

loci of the roots.

The discussion of numerical results is not drastically

affected by the assumption that the gain and loss per

pass in each resonator are equal, i.e., that there is zero

net gain around the complete loop. This simplifies the

discussion by eliminating one parameter; let

1
—= A”32=8>1.
A-l’

(30)

In terms of 6, (29) becomes

sinh ~(m + l)TOS = + p sinh ~[(m – l)TOS – in 8] (31)

and, if ~ is only slightly larger than unity, as in typical

practical cases, the last equation separates so only the u

TABLE I

Root
Number

~=1 P=O.8 p=o. s p=o.2 ~=o

1

I
0.167 +jOO
0. 167+j60°
0. 167+j120°
0. 167+j180°
0.167 –j120°
0.167 –;60°

–o .500 +;0”
–O .500 +j180°

I

I

0.143 +jo”
0.097 +j66”
o.097+jl14”
0. 143+;180°
0.097 –]114”
0.097 –j66°

–o.333+jo”
–0.333+j180”

l—

I
I

I

0.100 +jOO

O .034. +j75°
0.034 +jlos”
O.100+j180°
0.034 –j105°
0.034 –j75”

–0.167+j0°
–0.167+j180°

0,015 +jOO
0.005 +j84°
0.005 +~96°
0.045 +j180°
0.005 –j96°
0.005 –j84°

–o.055+jo”
–0.055+j180°

l—

I O+jOO
0+j90”
O+j90°
0+j180°
O –j90°
o –j90”
O+jOO
O+jl 80°
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but not the a of the modes depends on 8 as follows:

sin ~(m + I) TOW = f p sin ~(m — l) Toti (32)

in 8

{

tan *(m – l)Tou

)
~u = (m – 1) – (m+ 1) tan ~(m + ~)To@ . (33)

When p = O, there is no reflection and the solutions are

m + 1 roots equally spaced around the unit circle of the

z plane, all double because there is a wave in each loop

direction for each frequency. When p =1, the two

resonators act independently and the roots form two

sets: a pair inside the unit circle on the positive and

negative real axis and a set of 2m single roots equally

spaced on a circle with radius larger than 1. For inter-

mediate values of p the roots have intermediate posi-

tions.

Fig. 6 shows the root positions for m = 3 and constant

13, corresponding to various p’s. As p decreases from 1,

i.e., as the two resonators are increasingly coupled, the

roots all get closer to the unit circle, but the ratio of the

positive c’s increases; this shows that in practice we can

expect an increase of threshold but a decrease in number

of modes actually in oscillation. The value of the quan-

tity

is given in Table I for each root. When going from p = 0.8

to p = 0.2, the largest positive u becomes 3.1 times

smaller but the ratio of this a to the next increases by

a factor of 6.25.

Let us study now the effect of changing the 10SSY re-

gion length by amounts comparable with the wave-

length. According to Section IV, the locus of the roots

of D(z) = O is found by multiplying Ki in (29) by exp (j@),

where @ varies from O to 27r. Instead of (31) we have

sinh ~[(m + l)sTo +j~]

= + p sinh ~[(m – l)sTiI -- in ti – j~], (34)

which separates as before into

sin *[(m + l) Toti + @]

and

in 6

TOCT

== (m

3.

5

Fig. 7—Locus of the roots numbered 1 and 7 in Fig. 6 when the tilted
plate angle is changed. The other roots describe complementary
curves.
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Fig. 8—Normalized frequencies of the modes of the system shown in
Fig. 4 when the passive resonator length is varied through one
wavelength by adjusting the tilted plate.

When @ is varied, each root describes a locus curve,

the whole pattern repeating every 27r. The case c)f m = 3

and p = 0.8 is shown in the next two figures. For clarity,

the loci of only two roots are shown on Fig. 7; the others

describe complementary curves. Fig. 8 gives the normal-

ized co’s of all eight roots as a function of {~, with the

dotted parts corresponding to the regions where u <0.

It can be seen that the frequency interldS between

modes and also their growth parameters clepend on ~;

therefore the number of modes that will appear and

the frequency differences between them can be con-

trolled by “tuning” the passive resonator, which also

determines the periodicity of the solutions.


