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Modes in Coupled Optical Resonators with Active Media

J. R. FONTANA, MEMBER, IEEE

Summary—-A general method is proposed to analyze the proper-
ties of optical systems composed of several coupled resonators. It is
shown that by using appropriate matrices to represent the fields in
the resonators and the couplings between them, an equation can be
written, often by inspection, for the eigenvalue s = jw which gives
the frequency and the rate of growth of the fields for all the modes
of a given system.

A re-entrant coupled system with loss and gain regions is dis-
cussed as an example. The effects of changes in mirror transmission,
resonator length and medium properties are studied using the
method.

I. INTRODUCTION

T HAS BEEN suggested by various authors!-2 that
optical masers with desirable properties could be
obtained by operating the active medium in a sys-
tem of coupled optical resonators rather than in simple
structures of the Fabry-Perot type. In the latter many
modes of oscillation are allowed, separated by equal
frequency intervals and with relative growth rates
which depend only on the active medium and not on the
resonator. Simultaneous oscillation in several modes is
thus possible within the linewidth of usual materials.
Manuscript received February 12, 1964; revised Maich 16, 1964.
The author is with the Department of Electrical Engmeermg,
Un1ver51ty of Minnesota, Minneapolis, an
1D, A. Kleinman and P. Kisliuk, “Discrimination against un-
wanted orders in the Fabry-Perot resonator 7 Bell Sys. Tech. J.,
vol. 41, p. 453; 1962,

2 M. Birnbaum and T. L. Stocker, “Mode selection properties of
segmented rod lasers,” J. Appl. Phys., vol. 34, p. 3414; 1963.

Coupled systems can have modes with unevenly spaced
frequencies and different rates of growth or of attenua-
tion if lossy materials are used as well as active media.
These properties depend on the resonant system as well
as the materials, and are determined by mechanical de-
sign and adjustment. Possible features include selective
mode suppression, so that only one mode oscillates, or
so that only two oscillate with controllable frequency
separation.

The properties of arbitrary coupled resonator systems
can be studied as an eigenvalue problem. The time-
dependence properties of each mode are given by the
complex exponential exp (st), where s =04 jw expresses
the frequency of oscillation and the rate of growth or
decay of the mode. The form of the eigenvalue equation
specifies the freedom one has to choose the eigenvalues
s; that is, it shows the possibilities and limitations of
each particular system and also of coupled systems in
general. The analysis is greatly simplified by considering
that the traveling waves inside the resonators are ap-
proximately TEM. Use can thus be made of equivalent
circuits with coupled TEM transmission lines.

II. Two-MIRROR RESONATORS

To introduce the method proposed, we consider first a
simple, uncoupled system. Fig. 1(a) shows a resonator
formed by two identical mirrors in a medium assumed
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Fig. 1—Two-mirror resonator and its transmission line
equivalent representation.

without absorption. Fox and Li® have shown there exist
modes characterized by field distributions which repro-
duce themselves in pattern after bouncing between the
mirrors. If x and v are (curvilinear) coordinates on the
mirrors, and Y(xy) is the field (E or H) leaving one
mirror, then the condition for ¢ to belong to one of these
modes is that the incoming field distribution on the
other mirror equals

1
—(xy). )
Y

The constant v and the function ¢(xy) characterize
each mode. Both depend on the frequency w but, over
the narrow frequency range typical of the operation of
masers, the y’s are so close to transverse electromagnetic
that they can be assumed independent of w. The same
is true of the magnitudes [7[ The phases of v vary
linearly with w. Therefore

y(w) = | 7] eoten (2)

where T is the one-way transit time between mirrors
and f is a constant phase shift. Since ¥ (xy) depends on
the mode only, the fields leaving one mirror can be
represented by a complex number A and the fields ar-
riving to the other by another number 4’, both quanti-
ties being defined so that IAI2 and IA’|2 equal the
corresponding powers.

If the medium between the mirrors has linear absorp-
tion properties (positive or negative), a time absorption
coefficient « can be defined so the fields produced by
Y(xy) are given by

1
e — Y(xy) 3)
v

instead of (1).
Each mode in a two-mirror system is then character-
ized by a complex propagation coefficient p defined by

3 A, G. Fox and T. Li, “Resonant modes in a maser interferome-
ter,” Bell Sys. Tech. J., vol. 40, p. 453; 1961,
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With an active medium of sufficiently negative «, we
can have self-replicating patterns which grow in time.
Under this oscillation situation, the time dependence
of all fields is given by a certain exp (st), with s=0-jw.
The condition for resonance is found by following the
wave leaving one mirror through two transits and two
reflections. Letting p be the amplitude reflection coeffi-
cient of the mirrors, the condition after the time 27 of a
round trip is that the phase is the same and the ampli-
tude has increased by a factor exp (2¢ 7). Therefore °

exp (20T) = (po)* (5)

or, substituting p from (4) and using a determinantal
form,

e e T—7(@+wT) . (4_)

— ] 'Vl eaT+igsT —p

_ l ’YI e T+ibps T

= 0, (6)

—p

All quantities are known {rom the physical and geo-
metrical properties of the system except s. The solution
for s is

- _ R AL 7
o o+ pa (M
—0 + 27k
R 8
w e (8)

E=0,1,2 3, etc.

The condition for positive ¢ is contained in (7); if «
is sufficiently negative for given ]'y and p, oscillation
at any of the frequencies given by (8) is possible.

For all the mode solutions characterized by the same
Y (xy), the simple transmission line equivalent circuit of
Fig. 1(b) applies. The line has the same Jength and at-
tenuation as the region between the mirrors, and the
terminations have reflectivity p. This equivalent circuit
and (6) are easy to generalize for the case of mirrors with
different p.

1II. MULTIRESONATOR SYSTEMS

The approach of the preceding section can be ex-
tended to coupled configurations. Fig. 2(a) shows a sys-
tem with three parallel plane mirrors, the middle one
partly transparent. In this case, the fields in both parts
will be interdependent and the whole structure will be-
have as a system with modes described by values of s
different than for either part alone. To get a coupling
of this type, the modes in both regions must have the
same ¥ (xy). In Fig. 2(b) a single pair of mirrors support
several modes of the type described in Section II, with
different ¢¥{xy), but they are coupled by a perturbing
irregularity shown diagrammatically on one mirror.
Fig. 2(c) is similar to 2(a) but with another coupling
arrangement.
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All these systems are formed by reflecting surfaces
immersed in media with linear absorption or emission
properties, possibly different for each region. The fields
these structures can support are all described in terms
of self-reproducing patterns ¢,(xy) traveling from one
reflecting surface to another. Calling these propagating
patterns traveling waves, we use the symbols A, and
A as before to indicate amplitude and phase for each
one of them at the sending and receiving surfaces, re-
spectively. The term mode is used for the whole system.

The arrows on Fig. 2 indicate the traveling waves for
each case. Only two pairs are shown for (b) although
there could be many. In Fig. 3, a transmission line
equivalent circuit is shown for each system of Fig. 2,
with the traveling waves numbered to correspond.

To apply the method of Section I1, let [4] and [A’]
be column matrices of order N equal to the number of
traveling waves in the system

n

[4] = 1;42 | 9
)
A(

(] = | (10)
Ay

The reflecting-transmitting surfaces perform the func-
tion of coupling the matrices [4] and [4’]; each ele-
ment of [4] is a linear combination of the elements of
[4']. So, we can define a square coupling matrix [C],
of order NV, such that

[4] = [c][4]. (11)

The matrix [C] is not necessarily symmetric, and its
elements will be complex if fixed phase delay is intro-
duced at the coupling. As no traveling wave couples to
itself, the diagonal elements are all zero: C,,=0. For
passive couplings,

2l < (12)

To study the time dependence of the fields under
resonant conditions we write another relationship be-
tween [4]and [4'],

[4'] = [P][4].
The square propagation matrix [P ] has only diagonal

elements P,; as no interaction is assumed between
traveling waves except at the surfaces:

A{ = Puds.

(13)

(14

Each P,, is not equal to the p, defined in (4) because
A; and 4/ in (14) are considered at the same instant
of time ¢, while according to the definition
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Fig. 2—Examples of coupled resonator systems. The broken lines
show transmitting-reflecting surfaces. The arrows indicate the
traveling waves; only two pairs are shown in (b).
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Fig. 3—Equivalent transmission line circuits for the systems of
Fig. 2. The traveling waves are numbered to correspond. The
boxes represent passive couplers.

A @)
= (15)
At — Ty
Since all fields grow with exp (o?),
po— O _ (16)
i A@([) ?z
where, as before,
P = ! i Ti—i(Tit8,) (17
| ve)
Combining (11) and (13) we have
[4] = [c][P][4] (18)
or
([Cl[P] ~ [1]}4 =0 (19)

where [I] is the identity matrix.
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Each solution [A] of this equation gives the starting
amplitudes and phases of all traveling waves correspond-
ing to a mode of the system. The eigen value is s = +jw,
which is the only quantity in the curly bracket not de-
termined directly by the geometry and physical proper-
ties of the system. The values of s are given by the fol-
lowing determinantal equation, obtained by perform-
ing the operations and using the fact that the p.’s are
nonzero:

— Kyes Tt Cra Civ
D={| Cu  —KeTr .- (o =0 (20)
Cw Cn2 -« —KyesTn
where
K, = || enTtoti, (21)
|K¢ % is the fractional power lost per one-way pass

through the 4th resonator; if | K,| <1, 4.e., if a, is suffi-
ciently negative to compensate for IpL] >1, there is net
gain in the ¢th traveling wave.

IV. SoLuTioN oF THE DETERMINANTAL EQUATION

For any given system, (20) is readily written. The
diagonal elements are given by the parameters a, f’yl,
6 and T of each resonator, and the coupling coefficients
C,, by the system geometry and mirror properties.

To find s, we must solve a transcendental equation. In
many cases, however, the determinant reduces to a
polynomial with integer exponents. This happens when

all the transit times 7", are exact multiples of some time
T,

T, = miTo. (22)

Then we can use a new complex variable instead of s,

z = esTo,

(23)
and write

esTi = gm (24)
so that the determinant in (20) becomes a polynomial
D(z) of order

M= m. (25)

Consequently, a coupled system will possess M pos-
sible values of z, distinct or multiple, representable on
the complex plane. Their magnitude gives the growth
rate o of the corresponding mode: all the z's within the
cirche | 2| =1 are for damped modes, and those outside
for growing modes. The angle of each z is the frequency
w of the mode multiplied by the constant 7% and, as the
angles are multivalued, there are infinitely many «'s for
each z, in agreement with (23), separated by equal in-
tervals 2w/ T . A complete set of M wvalues of z with the
angles taken between 0 and 27 forms a period for all the
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possible values of w allowed by the system. How many
of these periods have to be considered in a practical case
depends of course on the frequency dependence of the
active media.

The form of the equation D(z) =0 gives some prop-
erties of the solutions. Multiple roots can exist, but there
is always more than one root, as D(zg) is not of the form
(z—20) M.

Eq. (20) also permits the study of small variations
in the physical dimensions of the system, such as those
caused by moving a mirror by one wavelength or less.
The effect of these “tuning” adjustments can be ex-
pected to be considerable, as the impedances in the
transmission line equivalent may vary drastically with
changes in length. If in a system in which (22) applies
we introduce a variation of one T, of the order of a
period of oscillation,

AT,‘ S 271'/(1),

then D(z) is modified by changing the corresponding
integer m, to a value

m.(l + €

where

<« 1.

%

So, any term containg g will be multiplied by gems.
The magnitude of this quantity is very close to unity
and its angle is

em,(wTy + 27K); K =0,1,2, etc.

If we vary continuously the value of one T, the ef-
fect on D(2) is a change in angle but not in magnitude
of all the coefficients of the terms containing the cor-
responding m,. A variation AT, =27 /w causes a change
of 27 in the angle of the coefficients.

V. EXAMPLE

The system shown in Fig. 4 displays characteristics
typical of the configurations discussed in this paper, and
will be used to illustrate the method of analysis.

The active medium is in a resonator shaped so that
both its ends can interact, to an extent determined by
the reflectivity of the end walls, through a passive
resonator from which output beams are coupled out by
means of a tilted plate. A small rotation of this plate will
change the path length in air.

The pertinent parameters of the system are the re-
flectivity and transmissivity of the end mirrors and of
the plate, the plate angle, the physical dimensions and
the properties of the active medium. The power ex-
tracted by the tilted plate can be considered as a loss of
the passive resonator and the phase shift as an adjust-
ment of its length, so a proper value for K in the passive
resonator accounts for all plate effects. Fig. § is a repre-
sentation showing the four coupled traveling waves.
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Fig. 4—Example of coupled resonator system. The active medium is
in the broken ring-shaped resonator with four mirrors and two
partly transparent end surfaces. The variable tilted plate in the
air-filled resonator reflects part of the energy away from the
system, as shown by the arrows.

Fig. 5—Diagrammatic representation of
the system of Fig. 4.

a

Fig. 6—Mode eigenvalues for the system of Fig. 4, represented in
the complex z plane, for several values of the end surface reflec-
tivity p. The circles have unit radius.
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Let us first make the transit time in the active region
an exact multiple of that of the passive region,

T1 = Tz = ’WLT3 = mT4 = mTo. (26)
The determinantal equation D(g) =0 can be written
at once,
— Kqg™ p T 0
P — Ky3m 0 T
D(z) = =0. (27
T 0 — K33 —p
T —p — Kz

The symbols p and 7 stand for reflectivity and trans-
missivity respectively. In what follows, we assume zero
mirror loss, so

p? 72 =1

Expanding (27), writing Ky=K;, K;=Kj; and using
(28) we have

(28)

2(1 — pz) p? o?
z2m+2 - loemtY Zﬂm — 22
K1K3 K32 Klg
=

Putting numbers for p, Kj, K; and m, we can solve
for the 2m+2 values of 2. Plotted on the complex z
plane, these values would show the frequency spacing
and growth rates of the 2m-+2 modes in a period of the
complete set of solutions, repeating at frequency inter-
vals of 27/ T',. Changes in the parameters would produce
loci of the roots.

The discussion of numerical results is not drastically
affected by the assumption that the gain and loss per
pass in each resonator are equal, i.e., that there is zero
net gain around the complete loop. This simplifies the
discussion by eliminating one parameter; let

1
- Kt =a> 1 (30)
In terms of §, (29) becomes
sinh 3(m + 1)Tos = + psinh 3[(m — 1)Tos — In 5] (31)

and, if § is only slightly larger than unity, as in typical
practical cases, the last equation separates so only the ¢

TABLE 1

Nﬁr‘;fbter p=1 0=0.8 p=0.5 p=0.2 p=0

1 0.167+70° 0.143+50° 0.100-70° 0.045+j0° 04-70°

2 0.167 --760° 0.097 +766° 0.034+775° 0.005+784° 0-+790°

3 0.167+7120° 0.097 +7114° 0.034+7105° 0.005-1796° 04790°

4 0.167+7180° 0.143+7180° 0.10047180° 0.045-7180° 0+7180°

5 0.167—7120° 0.097 —j114° 0.034 —7105° 0.005 —796° 0—790°

6 0.167 —760° 0.097 —766° 0.034—775° 0.005 —784° 0—790°

7 —0.500170° —0.3334750° —0.167+50° —0.055--70° 0-+70°

8 —0.500+7180° —0.33347180° —0.167+7180° —0.055-+7180° 0-+7180°
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but not the w of the modes depends on & as follows:

sin 3(m + DT = + psin 3(m — 1) Tyw (32)

ln_'o‘m( )= 1) tan%(m——l)Tow} (33
Tewr " {tan Lom + 1)Twf )

When p =0, there is no reflection and the solutions are
m—+1 roots equally spaced around the unit circle of the
z plane, all double because there is a wave in each loop
direction for each frequency. When p=1, the two
resonators act independently and the roots form two
sets: a pair inside the unit circle on the positive and
negative real axis and a set of 2m single roots equally
spaced on a circle with radius larger than 1. For inter-
mediate values of p the roots have intermediate posi-
tions.

Fig. 6 shows the root positions for m =3 and constant
8, corresponding to various p’s. As p decreases from 1,
i.e., as the two resonators are increasingly coupled, the
roots all get closer to the unit circle, but the ratio of the
positive ¢’s increases; this shows that in practice we can
expect an increase of threshold but a decrease in number
of modes actually in oscillation. The value of the quan-
tity

T()O' T

Iné + il
is given in Table I for each root. When going from p=0.8
to p=0.2, the largest positive ¢ becomes 3.1 times
smaller but the ratio of this ¢ to the next increases by
a factor of 6.25.

Let us study now the effect of changing the lossy re-
gion length by amounts comparable with the wave-
length. According to Section IV, the locus of the roots
of D(z) =0 isfound by multiplying K3 in (29) by exp (jé),
where ¢ varies from 0 to 27. Instead of (31) we have

sinh %[(m + 1)sT +jqf>]

= + psinh 3[(m — 1)sTo — In 6 — jo|, (34)
which separates as before into
sin 3[(m + 1) Tow + ¢]
= 4+ psin ¥{(m — D)Tw — ¢] (35)
and
Iné
Too

—m—1) — (m+ 1) ftantl0n = D)Tw = ¢J} . (36)

tan 2[(m + 1) Tow + ¢]
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Fig. 7—Locus of the roots numbered 1 and 7 in Fig. 6 when the tilted
plate angle is changed. The other roots describe complementary
curves,
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Fig. 8—Normalized frequencies of the modes of the system shown in
Fig. 4 when the passive resonator length is varied through one
wavelength by adjusting the tilted plate.

When ¢ is varied, each root describes a locus curve,
the whole pattern repeating every 27. The case of m=3
and p=0.8 is shown in the next two figures. For clarity,
the loci of only two roots are shown on Fig. 7; the others
describe complementary curves. Fig. 8 gives the normal-
ized w’s of all eight roots as a function of ¢, with the
dotted parts corresponding to the regions where ¢ <0.
It can be seen that the frequency intervals between
modes and also their growth parameters depend on ¢;
therefore the number of modes that will appear and
the frequency differences between them can be con-
trolled by “tuning” the passive resonator, which also
determines the periodicity of the solutions.




